
1 Random sampling

1.1 Data display

1.1.1 Dotplots

1.1.2 Box plots

A box plot is a graphic summary of a set of data in terms of he median and

the quartiles. Suppose we measure the pulse rate of 12 students following a mid

term exam and we observe

62, 64, 68, 70, 70, 74, 74, 76, 76, 78, 78, 80

The Median is the mid value if n is odd or the average of the mid values if

n is even. For the data above it is equal to 74+74
2 = 74

The first quartile denoted Q1 is the median of the lower 6 values, i.e.

Q1= 68+70
2 = 69

The third quartile denoted Q3 is the median of the upper 6 values, i.e.

Q3= 76+78
2 = 77

The inter quartile range denoted IQR is the difference Q3−Q1 = 77−69 = 8.

It is measure of the spread of the data.

1.1.3 Graphic displays

Example Car battery life data
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2.2 4.1 3.5 4.5 3.2 3.7 3.0 2.6

3.4 1.6 3.1 3.3 3.8 3.1 4.7 3.7

2.5 4.3 3.4 3.6 2.9 3.3 3.9 3.1

3.3 3.1 3.7 4.4 3.2 4.1 1.9 3.4

4.7 3.8 3.2 2.6 3.9 3.0 4.2 3.5

Relative Frequency distribution

Class Interval Class midpoint Frequency Relative frequency

1.5-1.9 1.7 2 0.050

2.0-2.4 2.2 1 0.025

2.5-2.9 2.7 4 0.100

3.0-3.4 3.2 15 0.375

3.5-3.9 3.7 10 0.250

4.0-4.4 4.2 5 0.125

4.5-4.9 4.7 3 0.075
Q1 = 3.1, Q2 = 3.4, Q3 = 3.875, IQR = Q3−Q1 = 0.775
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We will now indicate the link between a sample and the population. We

define a population to be the set of all observations with which we are concerned.

A sample is a subset of a population chosen in some way. We shall formally

represent a sample by means of random variables, X1, ..., Xn. By a random

sample of size n we shall mean that X1, ..., Xn are independent and identically

distributed, i.i.d. for short. It is informative to consider the following example

whereby three different individuals toss a coin 3 times each.

Tom Bill Shelly

First toss X1 H H H

Second toss X2 T H H

Third toss X3 T T H

Number of Heads W =
∑3
i=1Xi 1 2 3

So Tom took a sample and observed HTT . Bill took a sample of the same

size and observed HHT. Similarly Shelly observed HHH.

We denote specific values of a random variableW by w. So hereW has taken

observed values w1 = 1, w2 = 2, w3 = 3.

The joint probability distribution of X1, ..., Xn is

f (x1, ..., xn) = f (x1) ...f (xn)
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Definition A function of the random variables X1, ..., Xn is called a statistic.

For example the sample average is

X̄n =
1

n

n∑
i=1

Xi

The sample variance is

S2 =
1

n (n− 1)

n∑X2
i −

(
n∑
i=1

Xi

)2


Example Suppose we observe values 12, 15, 17, 20. Then x̄ = 16,
∑
x2 = 1058, s2 =

34
3
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1.2 Asymptotic sampling distributions

In statistics, we are most often interested in the distribution of a function of the

sample. For example, in coin tossing,we are interested in the distribution of the

number of heads in n tosses. This is called the sampling distribution. In another

example, we may be interested in the distribution of the average lifetime of a

certain type of light bulb. A remarkable result in probability is the central limit

theorem which states that for a large enough random sample, the distribution of

the mean of the sample under certain conditions will be approximately Gaussian.

This result does not require knowledge of the underlying distribution of the

random variable under consideration.

1.2.1 Sampling distribution of means

Theorem Central Limit theorem

Let X1, ..., Xn be a random sample from a population with mean µ and variance

σ2. Then the asymptotic distribution of

Z =
√
n

(
X̄n − µ
σ

)

as n→∞ is the standard normal distribution.

The approximation is usually good whenever n ≥ 30.

Example Suppose that we measure the diameter of a batch of 100 metal rods

produced in a manufacturing process. We observe a batch mean value

x̄100 = 5.027.

5



The process has a specified mean length µ = 5 cm and the standard deviation

is σ = 0.1cm. The manufacturer wishes to ensure that the sample averages do

not exceed the set mean of 5 cm. Does the batch meet the specifications?

To answer the question we compute the probability that the batch mean

differs from the process mean by more than 0.027.

P
(
|X̄100 − 5| > 0.027

)
= P

(
|Z| > 0.027

√
100

0.1

)
= 2P (Z > 2.7)

= 2 (0.0035) = 0.007

Since it is highly unlikely that the mean of the sample will differ from the

process mean by more than 0.027, we conclude that the batch does not meet

specifications. Note that we did not make any distributional assumptions.

Example A label on a standard bottle of beer in Canada states that it contains

341 ml by volume. A company claims it is complying with label and that

the standard deviation is 5 ml. To verify the company claim, we take a

random sample of 100 bottles and observe x̄ = 339.5ml. The probability

of observing an average value less than or equal to 339.5 is

P
(
X̄100 ≤ 339.5

)
= P

(
Z ≤ 339.5− 341

5/
√

100

)
= Φ (−3) = 0.0013

Hence it is highly unlikely to observe an average as small as or smaller than the

one observed. We conclude the company is not complying.
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Example Rounding errors. Suppose that in making numerical computations

either manually or by computer, only a certain finite number of significant

digits can be retained at each step. If computations are carried to the

closest 10−4,then all numbers involved will be restricted to 4 digits to the

right of the decimal. That is, 3 1
3 is 3.3333; 2

3 is 0.6667; π is 3.1416.

The difference between the number written in full as an infinite decimal and its

rounded equivalent is rounding error. For 2
3 it is 0.666...−0.6667 =−0.333...×10−4

.

Suppose that in general the largest and smallest rounding errors are uni-

formly distributed in the interval −0.5×10−k , 0.5×10−k. If n numbers are

computed and added together, the rounding error is a sum
∑n
i=1Xi which is

approximately normally distributed with mean 0 and variance (10−k)
2

12 n.

If n = 12, k = 4 P
(
−10−4 <

∑n
i=1Xi < 10−4

)
' Φ

(
10−4−0
10−4

)
-Φ
(

−10−4−0
10−4

)
=

Φ (1)− Φ (−1) = 0.6836
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Theorem Central Limit theorem for samples from different populations

Let X̄n1
be the mean of a random sample of size n1 from a population with

mean µ1 and variance σ2
1 . Let X̄n2

be the mean of a random sample of size n2

from another population with mean µ2 and variance σ2
2 . Then the asymptotic

distribution of

Z =

(X̄n1
− X̄n2

)
− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2


for large n1, n2 is the standard normal distribution.

Example The target thickness for both fruit flavored gum and for fruit flavored

bubble gum is 6.7 hundredths of an inch. Hence, µ1 − µ2 = 0. We take

random samples of n1 = 50, n2 = 40 respectively and we observe

x̄50 = 6.701, ȳ40 = 6.841.

Suppose we know σ2
1= 0.1082, σ2

2= 0.1552. The probability of observing

a difference as small as x̄50 − ȳ40 = −0.14 is

P
(
X̄50 − Ȳ40 ≤ −0.14

)
= P (Z ≤ −4.848) ≈ 0

We conclude it is unlikely to observe this difference.
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1.3 Exact distributions

In the following theorem, we state the exact sampling distribution of S2 when

we have a random sample from a normal distribution

Theorem The statistic

χ2 =
(n− 1)S2

σ2
=

∑(
Xi − X̄n

)2
σ2

where S2 is the sample variance from a random sample of size n drawn

from a normal population has a chi-squared distribution with ν = n − 1

degrees of freedom.

Example A professor claims that IQ scores for college students have a variance

of 100. To test the claim, he takes a random sample of 23 students and

computes the sample variance to be 147.82.The chi squared value is then

χ2 =
(n− 1)S2

σ2

= 22
147.82

100
= 32.52

Is this value too large or too small? From the Chi square table A.5, we see that

32.52 is to the left of the upper 5% point given to be 33.924. We conclude that

there is substance to the claim.
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1.3.1 t-distribution

In the next theorem, we state the exact distribution of the sample mean when

we have a random sample from a normal distribution with unknown variance.

Theorem Let Z be a standard normal random variable and V a chi-squared

random variable with ν degrees of freedom. If Z, V are independent, then

T =
Z√
V/ν

has a Student’s t-distribution with ν degrees of freedom. This density is

given by

h (t) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
πν

(
1 +

t2

ν

)−( ν+1
2 )

,−∞ < t <∞

Corollary Let X1, ..., Xn be a random sample from a normal distribution with

mean µ and variance σ2. Then

T =
√
n

(
X̄n − µ
S

)

has a Student t-distribution with ν = n− 1 degrees of freedom.
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Example A man throws a shot put n =6 times with distances in feet equal

to 58, 69, 62, 55, 64, 65. Let X be the random variable representing the

distance. Assume X is normally distributed with mean µ and variance

σ2. The man claims that his average throw distance is µ = 65. Is he

telling the truth?

To test the claim, we compute x̄6 = 62.2, s = 5.04. Then

P
(
|X̄6 − 65| > 2.8

)
= P

(
|T | > 2.8

5.04

√
6

)
= P (|T | > 1.36)

= 2P (T > 1.36)

We see that from the Student t distribution with n − 1 =5 degrees of freedom

in Table A.4 p.439

(0.10) < P (T > 1.36) < (0.15)

There does not appear to be any evidence that the man is not telling the truth.
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1.3.2 Fisher distribution

In the next theorem, we state the exact distribution of the ratio of sample

variances when we have two independent random samples from normal distri-

butions.

Theorem Let U and V be two independent random variables having chi-

squared distributions with ν1, ν2 degrees of freedom respectively. The

distribution of

F =
(U/ν1)

(V/ν2)

is the Fisher distribution with ν1 degrees of freedom in the numerator and

ν2 degrees of freedom in the denominator.

Corollary If S2
1and S2

2 are the sample variances with sizes n1, n2 based on two

independent normal populations having variances σ2
1 , σ

2
2 respectively, then

F =

S2
1

σ2
1

S2
2

σ2
2

has an F-distribution with ν1 = n1 − 1,ν2 = n2 − 1 degrees of freedom.
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Example In a midterm there were two versions of the same exam. The follow-

ing data was recorded

n x̄ s2

Version 1 82 9.171 9.946

Version 2 73 9.438 9.194

Is it reasonable to assume that the variances are equal?

We calculate

F =
9.946

9.194
= 1.08

The probability of observing a value larger is about 0.01 from table A.6. We

conclude that it is not reasonable to assume the variances are the same for both

versions.
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Some data

Tensile strength

Cotton % Tensile Strength

15 7, 7, 9, 8, 10

20 19, 20, 21, 20, 22

25 21, 21, 17, 19, 20

30 8, 7, 8, 9, 10

Nicotine data

1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97

0.85 1.24 1.58 2.03 1.70 2.17 2.55 2.11

1.86 1.90 1.68 1.51 1.64 0.72 1.69 1.85

1.82 1.79 2.46 1.88 2.08 1.67 1.37 1.93

1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69
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